This Research Report is issued under the fixed designation RR: D22-1030. You agree not to reproduce or circulate or quote, in whole or part, this document outside of ASTM International Committee/Society activities, or submit it to any other organization or standards body (whether national, international or other) except with the approval of the Chairman of the Committee having jurisdiction and the written authorization of the President of the Society. If you do not agree to these conditions, please immediately destroy all copies of this document. *Copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. All rights reserved.*

18 February 2003

Committee D22 on Air Quality Subcommittee D22.04 on Workplace Air Quality

Research Report D22-1030

Interlaboratory Study to Establish Precision Statements for ASTM D5836, Standard Test Method for Determination of 2,4-Toluene Diisocyanate (2,4-TDI) and 2,6-Toluene Diisocyanate (2,6-TDI) in Workplace Atmospheres (1-2 PP Method)

Technical contact:

Mr. Warren Hendricks OSHA Salt Lake Technical Ctr Sandy, UT 84070 801-233-4939 hendricks.warren@dol.gov

> ASTM International 100 Barr Harbor Drive West Conshohocken, PA 19428-2959

1. Introduction

This research report presents precision and accuracy data obtained in an interlaboratory test study involving analysis of spiked samples by 13 different participating laboratories.

2. Test Method

The test method uses glass-fiber filters impregnated with 1-(2-pyridyl)piperazine (1-2PP) to sample air suspected to be contaminated with 2,4-TDI and/or 2,6-TDI. 2,4-TDI and/or 2,6-TDI are converted to stable derivatives by 1-2PP that are analyzed by high-performance liquid chromatography (HPLC) with fluorescence or ultraviolet detection.

3. List of Participating Laboratories

	Table 3.1					
Participating Laboratories						
Laboratory	Address	Telephone	Contact			
The Travelers Industrial Hygiene Laboratory	90 Lamerton Rd. Windsor, CT	800.842.0355	George Johnson			
AFIERA/SDC	2350 Gillingham Brooks City Base, TX 78235	210.536.6165	Gloria Gover			
Kemper/NATLSCO	95 Oakwood Road Zurich, IL 60047	847.320.7188	Bill Walsh			
Johns Manville IH Lab	10100 W. Ute Ave. Littleton, CO 80127	303.978.2584	Scott Stiener			
OSHA SLTC	1781 South 300 West Salt Lake City, UT 84115-1802	801.524.7900	Wayne Potter			
DataChem	960 W. Levoy Dr. Salt Lake City, UT 84123	801.266.7700	Jim Perkins			
WOHL	2601 Agriculture Dr. Madison, WI 53718	608.224.6210	Derek Popp			
BASF Corp.	1609 Biddle Ave. Wyandotte, MI 48192	734.324.6320	Rob Laney			
Liberty Mutual Insurance Lab	71 Frankland Rd. Hopkinton, MA 01748	800.230.6263 X 252	Ethyl Patricio			
Bayer Polymer Organization	100 Bayer Rd. Pittsburgh, PA 15205	412.777.2931	V. Dharmarajan			
WISHA Laboratory	805 Plum St. First Floor MS-4613 Olympia, WA 98504-4613	360.902.5171	Philip Peters			
Czartech Analytical Inc.	42910 W. Ten Mile Rd. Complex A-6 Novi, MI 48375-5419	248.348.2300	Bruce Czarnecki			
NEPMU	1887 Powhatan St. Norfolk, VA 23511-3319	757-444-7671 X 3038				

A list of participating laboratories is shown in Table 3.1.

4. Interlaboratory Test Program Instructions

A cover letter summarizing analytical instructions discussed in telephone conversations with each participating laboratory was included with the spiked samples and it is presented in Appendix 1. A copy of ASTM D5836-95 was included with the spiked samples and a copy is included in Appendix 3. ASTM Standard E691-99 Standard

Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method was used as a guide for this study and to perform statistical calculations.

5. Statistical Data Summary

Thirteen sets of glass-fiber filters were spiked with 4 levels of 1-2PP derivatives of TDI (TDIP) and sent to 13 participating laboratories by overnight shipping. Each filter set consisted of 4 filters that were first coated with 1-2PP as described in the method, and then spiked with 2,4-TDIP and 2,6-TDIP from the same solution, plus a blank coated filter. The filters were shipped in separate 4-mL glass vials. A sample of the diluted TDIP mixture used to spike the coated filters was included with each filter set for use as an analytical standard. The amounts of TDIP (expressed respectively as mg/mL of free 2,4- and 2,6-TDI) present in the mixture solution were made known to the participating laboratories. The amounts of 2,4- and 2,6-TDIP (expressed as free 2,4- and 2,6-TDI) spiked on the filters are shown in Table 5.1.

Table 5.1							
Amounts (Φ g) of 2,4- and 2,6-TDIP (as Free TDI) Spiked on the Filters							
Filter 1		Filter 2		Filter 3		Filter 4	
2,4-TDI	2,6-TDI	2,4-TDI	2,6-TDI	2,4-TDI	2,6-TDI	2,4-TDI	2,6-TDI
5.37694	5.32496	3.97426	3.93584	2.80536	2.77824	1.40268	1.38912

Results from the analysis of the spiked filters were reported by the participating labs in terms of g per sample. The raw data is presented in Appendix 2. The results are expressed here as percent of the amounts spiked on each filter, and are shown in Tables 5.2 and 5.3.

Table 5.2 2.4-TDI									
	Recovery (percent of theoretical)			Statistical Calculations					
level	1	2	3	4	0	S	d	h	k
Lab ID									
1	100.15	99.11	100.84	101.81	100.4775	1.1379	-5.4086	-0.91	0.17
2	100.24	107.44	102.66	105.51	103.9625	3.1645	-1.9236	-0.32	0.48
3	106.01	106.43	108.36	115.49	109.0725	4.3990	3.1864	0.54	0.67
4	85.55	103.16	99.81	99.81	97.0825	7.8488	-8.8036	-1.48	1.20
5	102.75	103.67	105.16	109.43	105.2525	2.9567	-0.6336	-0.11	0.45
6	99.50	93.60	102.30	106.23	100.4075	5.3119	-5.4786	-0.92	0.81
7	107.87	101.65	102.30	121.20	108.2550	9.0703	2.3689	0.40	1.38
8	106.01	103.16	106.94	106.94	105.7625	1.7895	-0.1236	-0.02	0.27
9	92.43	99.39	98.38	103.37	98.3925	4.5211	-7.4936	-1.26	0.69
10	98.59	118.46	118.81	129.61	116.3673	12.9321	10.4811	1.76	1.97
11	111.59	110.71	117.63	121.20	115.2825	5.0023	9.3964	1.58	0.76
12	104.52	108.70	107.29	117.63	109.5350	5.6691	3.6489	0.61	0.86
13	97.55	101.53	107.12	120.48	106.6700	10.0085	0.7839	0.13	1.53

Average of cell averages 105.89

Standard deviation of cell averages 5.95 (RSD 5.62) Repeatability standard deviation 6.56 (RSD 6.20) Reproducibility standard deviation 8.23 (RSD 7.77)